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INTRODUCTION 

Over the past three years we have been developing a finite element based procedure for 
the solution of high speed viscous compressible flows. The approach followed has been to 
compute steady state solutions via a false transient, using explicit time stepping 
scheme, and to attempt to improve the solution quality by harporating adaptive mesh 
procedures. This strategy has been shown to be very successful in the context of the 
compressible Euler equations and also for some simple compressible viscous flows. The 
main thrust of our work over the past twelve months has been to work on the extension of 
the approach to the solution of some realistic compressible viscous flows. When flows at 
high Reynolds number are investigated, it sooil becomes apparent that explicit techniques 
have to be supplemented If they are to deal effectively with the large variations in element 
size and aspect ratio which characterise the computational grids necessary for adequate 
resolution of the primary flow features. For this reason, our basic Taylor-Galerkin 
solution algorithm has been re-written in an expicit/implicit form. A structured grid is 
laid down in the vicinity of solid walls and the remainder of the flow field is covered by 
an unstructured assembly of triangles. In the unstructured grid region the basic explicit 
solver is employed, while the implicit version is used in the structured portion of the 
grid. The solution of the implicit equation system is achieved by directional splitting, 
using a block tridiagonal solver. Using this approach, solutions have been computed for 
the problems of (i) flow past a flat plate, M-3, Re-1000 (ii) shock/ boundary layer 
interaction, M-2, Rem296000 (U) flow over a compression corner, M- 1 1.68. Re0246000 
(iv) uniform flow past a circular cylinder, M-6.34, Re-39770. A summary of the results 
produced is included in this report and demonstrates the numerical performance of the 
scheme. 

IMPLICIT/EXPLICIT SOLUTION SCHEME 

A description of the scheme will be given for the Euler equations. The extension [1,21 to 
the Navler-Stokes equations follows directly, but the algebra becomes rather messy. The 
form of the scheme was suggested by the original work of Lerat et al I3,41. The governing 
equations are assumed in the form 

where, in the usual notation, U denotes the vector d conserved variables and Fj denotes 
the flux component in direction xj of a Cartesian coordinate system. Using a Taylar series 
expansion about time t - t,gives 
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and, using the governing equation, we can write 

The time stepping scheme then becomes 

The solution of this equation system is achleved in a two-stage manner: 

STAGB 1 ... explicit predictor 

This stage is performed using the two step Taylor-Galerkin code that has formed the basis 
of our previous work. . 

STAGE Z..implicit corrector 

The implicit corrector is only employed on the structured grid and the equation system is 
solved by directional splitting in the form 



To reduce the computational cost, these equatlons are formed using the finite difference 
approach. Note however that at steady-state the solution satisfies 

APPLICATIONS 

The results produced by applying the above algorithm to a series of viscous flow problems 
will now be shown. 
(1) flow over a flat plate, M-3, Re-1000. A regular mesh of 56*50 points and 5600 elements 
was employed ( see Figure 1 1. Points were clustered near the leading edge and near the 
plate. Isothermal wall conditions were applied on the plate with symmetry conditions 
aheadof the nose of the plate. The use d a regular mesh means that the implicit scheme 
can be applied everywhere or only locally. Fkures 2 and 3 show the density and pressure 
contours when 15 layers near the plate are treated implicitly with a Courant number C-5. 
A comparison between the behaviour of the fully implicit, mixed implicitlexplicit and 
fully explicit schemes is made in Figures 4-7 in terms of the convergence behavior, exit 
density and x, velocity profiles and plate pressure distribution. Figures 8-10 show the 
comparison between the results of Carter 151 and the computatlons performed at ALB, LaRC 
for the same quantities. It may be observed that the rates of convergence ol the fully 
implicit and the mixed explicit/implicit schemes are approximately equal, while the fully 
explicit algorithm shows a much slower convergence behaviour with peculiar oscillatory 
behaviour ( which may be caused by an inappropriate artificial viscosity model for highly 
stretched grids 1. 
(li) shocklboundary layer interaction, M-2, Re-296000. The computation corresponds to 
the experiments of Hakkinen et a1 161 and the Reynolds number is based upon the distance 
of the shock impingement point from the leadhug edge of the plate. The shock is of 
sufficient strength to cause separation of the developing laminar boundary layer. The first 
mesh employed consists of a regular grid of 32'45 points, equally spaced in the x l  
direction and exponentially stretched in the xz  direction. The grid is shown in Figure 1 1  
and the computed pressure and Mach number amtours produced by the fully implicit 
procedure are shown in Figures 12 and 13. Adaptive remeshing'was now performed, 
producing the mesh of 3293 points shown in Figure 14. On this grid the solution was 
advanced at C-5 in the 21 layers nearest the plate and the final pressure and Mach number 
contours are given in Figures 13 and 16. The computed variation in the static pressure and 
the skin friction along the plate are shown in Figures 17 and 18 respectively. The results 
obtained on the second.mesh have been found to agree well with the computed results of 
MacCormack [71 and Dawes [SI. Details of the velocity profiles in the vicinity of the 
separation point CM be Seen In Figure 19. 
(N) flow over a compression corner, M-11.68, Re-246000. The intention was to compute 
the configuration tested by Holden [91 but  it has been retxntly discovered that the 
computed cornpression corner angle was 14.5 degrees which differed from the 15 degrees 
in the actual experiment. Consequently, this problem is curently being recomputed for the 



correct geometry and wit.. an improved mesh. We present the results for the incorrect 
geometry as an example of the computational performance. An initial solution was 
produced on a regular mesh, equally spaced in the x ,  direction and exponentially 
stretched in the xz direction. The computed solution on this mesh was used to start the 
adaptive refinement process. The final mesh employed is shown in Figure 20 and the 
solution was advanced with C-5 in the 24 structured layers along the wall. Density and 
pressure contours are shown in Figures 21 and 22 and the distributions of pressure and 
skin friction along the wall are given in Figures 23 and 24. The computed region of 
separated flow is smaller than that observed experimentally which suggests insufficient 
mesh resolution in the vicinity of the corner. 
(Iv) undisturbed flow past a cylinder, M-6.34, Re-39770. The problem was initially solved 
inviscidly and the mesh adapted for the bow shock. A structured mesh was then 
constructed in the vicinity of the cylinder and consisted of 15 layers of elements. The 
final mesh employed had 4312 points. The solution was advanced with C-5 in the 
structured grid region and explicitly Over the remainder of the grid. The final mesh and 
the computed contours of density and Mach number are shown in Figures 23-27. The 
computed distributions of pressure and heating rate over the cylinder surface are 
displayed in Figures 28 and 29 and are in good agreement with the results produced for 
this problem at ALB, LaRC. 

CONCLUSIONS 

A mixed explicit/implicit algorithm for the solution of problems involving high speed 
compressible viscous flows has been presented. Initial tests with the method have proved 
to be encouraging and the approach is being tested and extended further. In particular, 
the need for employing a structured grid and the finlte difference discretisation in the 
implicit region is being reviewed with the objective of producing an implicit method for 
unstructured grids. 

REFERENCES 

1 1 1  0. Hassan, Ph.D. Thesis, University of Wales, Swansea ( in preparation 1. 
[2l 0. Hassan, K.Morgan and J.Peraire, ' An implicit/explicit scheme for compressible 
viscous flows', to be submitted to 1nt.J.Num.Meth. Engng., 1988. 
I31 A.Lerat, J.Sides and V.Daru, ' Efficient computation of steady and unsteady transonic 
flows by an implicit solver', in Advances in Computational Transonics ( edited by 
W.G.Habashi 1, Pineridge Press, 543-375, 1985. 
I41 H.Hollanders, A.Lerat and R.Peyret. ' 3D calculation d transonic viscous flows by an 
implicit method', AIAA Paper 83-1953, 1983. 
131 J.B.Carter, 'Numerical solutions d the Navier-Stokes equations for the supersonic 
laminar flow over a two-dimensional compression corner', NASA TR R-385, 1972. 
I61 R.J.Hakkinen, I.Greber, L.TriUing and SSAbarbanel, 'The interaction of an oblique 
shock wave with a laminar boundary layer', NASA Memo 2-18-59W, 1959. 

. .. , . 

, .  

. .  



[71 R.W.MacCormack, 'A numerical method for solving the equations of compressible 
viscous flow', AIAA J. 20, 1275-1281, 1982. 
[81 W.N.Dawes, 'Efficient implicit algorithm for the equations of of 2D viscous 
compressible flow: application to shock-boundary layer interaction', 1nt.J.Heat and Fluid 

191 M.J.Holden, 'A study of flow separation in regions of shock wave-boundary layer 
interaction in hypersonic flow', A I A A  Paper. 

Flow 4, 17-25, 1983. 

ADDITIONAL PUBLICAT IONS 

1 I R.Lohner, K-Morgan, J.Peraire and M.Vahdati, 'Finite element flux corrected transport 
for the Euler and Navier-Stokes equations', Int.J.Num.Meth.Fluids, 7, 1093- 1 109. 1987. 
[2] JPeraire, K.Morgan and O.CZienkiewicz, 'Convection dominated problems', in 
Numerical Methods for Compressible Flows - Finite Difference, Element and Volume 
Techniques, ASME AMD-Vol 78, 129-147, 1986. 
[31 O.CZienkiewicz, KMorgan, J-Peraire and JZZhu, ' Some expanding horizons for 
computational mechanics - error estimates, mesh generation and hyperbolic problems ', in 
Computational Mechanics - Advances and Trends, ASME AMD-Vol 73, 28 1-297. 1986. 
I41 KMorgan, J.Peraire, J.Peiro and O.C.Zienkiewicz, ' Adaptive remeshing appied to the 
solution of a shock interaction problem on a cylindrical leading edge', to appear in the 
Proceedings of the Joint IMA/SMAI Conference on Computational Methods in Aeronautical 
Fluid Dynamics, Oxford University Press, 1988. 
IS1 J.Peraire, K.Morgan, J.Peiro and O.CZienkiewicz, 'An adaptive finite element method 
for high speed flows', A I A A  Paper 87-0559, 1987. 
[61 J.Peiro, L.Formaggia, J.Peraire and K.Morgan, 'Finite element solutions of the Euler 
equations in 2 and 3D', 7th GAMM Coderence on Numerical Methods in Fluid Mechanics, 
1987. 
[71 K.Morgan, J.Peraire, R.R.Thareja and J.R.Stewart, 'An adaptive finite element scheme for 
the Euler and Navier-Stokes equations', A I A A  Paper 87-1 172-CP, 1987. 
[81 K.Morgan and J.Peraire, 'Finite element methods for compressible flows', von Karman 
Institute for Fluid Dynamics Lecture Series 1987-04, 1987. 

. 



ORIGINAX PIAGFS l?3 
OF POOR QUALITY 

DENS I TY 



PRESSURE 
FIGURE 3 



A 

4 

0 

EXPLICI 

EXP - I 

IMPLICI 

T 

MP 

T 

0 . s 0 ~ ~ ~ . ~ ~ , , , , , , , , . , . . , . , . , , , , , , , , , , , , , , , ,  I .  , , , , , , , (  I 

0.20 * 0.40 0.60 0.80 1. .OO 8.00 

FIGURE 5 EX IT DENS I TY PROF1 LE 

EXPLICIT - EXP - IMP 

0 IMPLICIT 



XI 01 
U z 
LL 
\ e 

Y 

A 

4 

0 

EXPLICIT 

EXP - IMP 

IMPLICIT 

X/L 

FIGURE 7 WALL PRESSURE DISTRIBUTIONS 

EXIT DENSITY PROFILE 
-CRUDE UESH 
---. R E F I N D  E S H  

0 CARTER 
2.0 F 

1.8 

f .  

0 

.4 

.2 

.O I , . . . 1 .  I . . . .  . . . .  1 .  
.4 .8 .6 1 .o .Q .2 

Y/L 



EX IT U-VELOCITY PROF I LES 

8 a. 
\ a. 

.so 

.25 

1 

.79 

.oo 

5. a 

2. s 

.O 

- REFINED MESH P --- CRUDE MESH 
0 CARTER 

- REFINED MESH 
--- CRUDE MESH 

0 CARTER 

0 
- 

1.25 

WALL PRESSURE DISTRIBUTIONS 

- REFINED MESH 
0-0 CRUDE MESH 

b CARTER 

.O 
I 1 

1 .o 05 

x /  L 

F\GuQ€ l o  



PRESSURE 

MACH 



1 

E 

PRESSURE 



x10-2 

€ 
4.80 

J 
+- UPSTREAM 

4 I A X  SEPARATION 

+ DOWNSTREAM 



, 

I I 



I 

1 

x 1 0-2 



ORIGINAL PAGE Is 
OF POOR QUALIT%- F I G U R E .  25 



* EXP- I MP 

1 1 1 1 1 1 1 1  , l , , , , , , , , , t , , , , , , , , , ( , , ( , , , , , , , , , , , , ( , , , ,  

0 .OO 0.47 0.94 1.41 1.88 2.36 

S-COORD I NATE 


